Acoustic spiral wavefronts demonstrate linear phase directionality, facilitating precise azimuth estimation in underwater navigation through phase comparison with reference wavefronts characterized by constant phase directionality. The reliability of azimuth estimation depends on the phase directionality accuracy of both the spiral and reference wavefront sources. This study introduces a seven-element transmitting array, constructed using bender disk transducers, which is capable of generating both spiral and reference acoustic wavefronts with minimal phase directionality error. The array design was developed and evaluated using a point source array model and numerical simulations, followed by physical fabrication. To address the sensitivity of the phase–azimuth linearity to manufacturing imperfections in sound sources, a phase error compensation technique was implemented by adjusting the input signal parameters to the acoustic emitters. Experimental validation was conducted in an anechoic water tank, where both spiral and reference wavefronts were transmitted across multiple frequencies. The results reveal that the array prototype achieved sub-degree-level compensated phase directionality accuracy for both wavefront types at all the tested frequencies. Notably, at the resonance frequency of 7.3 kHz, the root-mean-square phase directionality error of the spiral wavefront was reduced to as low as 0.19◦.
Loading....